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Grain size statistics 

N.A.  HAROUN 
College of Engineering, King Abdul Aziz University, Jeddah, Saudi Arabia 

A method for the computation of spatial grain size distributions from intercept data 
based on a tetrakaidecahedron grain model is developed. The necessary inverse matrix is 
presented. The method is applied to a range of metallic and ceramic specimens. The 
derived distributions are analysed to show that they are not necessarily log-normal. 
Statistical techniques are applied to determine the minimum sample sizes and these are 
shown to increase as the distributions become more dispersed. The constant relating the 
average grain size to the average intercept length is also shown to be sensitive to the grain 
size distribution. 

1. Introduction 
In this article, a number of problems related to the 
evaluation of grain size and distribution will be 
tackled. These problems include finding a satisfac- 
tory method for the measurement of grain size dis- 
tributions in a variety of polycrystalline materials, 
investigation of the nature of these distributions, 
determination of optimum sample sizes and the 
relation of mean grain size to the mean intercept 
length. Apparently, little interest has so far been 
shown for employing statistical techniques in this 
field. 

2. Matrix for grain size distribution 
determination 

Methods for determining the three-dimensional 
grain size distributions from planar sections 
employ either area distributions [1-3 ] or intercept 
distributions [4-8].  The former are more tedious. 
Most of these methods ignore the actual grain 
shapes and assume them to be spherical [1,2, 4, 7] 
or ellipsoidal [8], e.g. Cahn and Fullman's method 
[7] based on sphere chord distribution data was 
employed to determine the grain size distributions 
in MgO [9] and A1203 [10]. As the spherical grain 

model is unrealistic [11, 12] successive subtraction 
techniques based on sectional area distributions 
[3] and, later, on intercept distributions in a 
tetrakaidecahedral grain model were developed 
[11 ]. However, successive subtraction techniques 
suffer from the drawback of accumulating errors. 
The calculation should start with the largest inter- 
cept groups. These are usually the few grains in 
which the relative error is large. Hence, a matrix 
approach will be developed hereforth. 

Intercept length distribution for a tetrakaideca- 
hedral grain was previously shown [ 11 ], see Table I. 
Assume a distribution: N1, N 2 . . . N 8  of three- 
dimensional grains of sizes DI, D 2 . . . D s .  On 

sectioning, the largest size grains D~ will contri- 
bute 0.365N~ intercepts of size I1, 0.295N~ inter- 
cepts of size 12 �9 �9 �9 0.013N~ intercepts of size 18. 
Similarly, grains of size D2 will contribute 0.365 N2 
intercepts of size 12, 0.295N2 intercepts of size 
l 3 . �9 . 0 . 0 0 5 N 2  intercepts of size la. Going down 
the distribution, grains of size D8 will contribute 
only 0.365N8 intercepts of size ls. It can thus 
be shown that the resulting two-dimensional 
distribution n~, n2 �9 �9 �9 n8 is a product of the two 
matrices shown in Equation 1 : 

TABLE I 

Relative 0-0.13 0.13-0.18 0.18-0.24 0.24-0.30 0.30-0.42 0.42-0.56 0.56-0.75 0.75-1.00 
size range* 

% 1.3 0.5 2.6 4.7 8.3 17.6 29.5 36.5 

*The class means were chosen to decrease in a geometric progression. 
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n] 

/'/2 
/'/3 
/'/4 
1"/5 

//6 
//7 

//8 

0.365 0.295 0.176 0.083 
0 0.365 0.295 0.176 
0 0 0.365 0.295 
0 0 0 0.365 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

i.eo 
A2 = BA3, (2) 

Hence 
Aa = B-1A2,  (3) 

where B-1 is the inverse matrix to B, shown in 
Table II. Hence, three-dimensional distributions 
can be obtained from two-dimensional distribu- 
tions by post multiplication of the latter by the 
inverse matrix given. For computauonal reasons, 
the two-dimensional intercepts shoma be classed 
in groups 0.75 to 1, 0.56 to 0.75 . . . 0  to 0.13 of 
the maximum measured intercept length. 

The ability of this technique to reproduce 
excellently the  three-dimensional distributions is 
demonstrated in Fig. 1, where a hypothetical inter- 
cept distribution based on a single-size Kelvin 
grain model was used to reproduce the three- 
dimensional (mono-size) distribution. It is envi- 
saged that the matrix in Table II can be fed to a 
microprocessor interphased with an automatic 
counting microscope to measure directly the 
spatial grain size distribution. 

2. The nature of grain size distributions 
Grain size distributions control the kinetics of 
grain growth [13], the relation between the aver- 
age grain size and intercept length measurements 
[14] as well as the mechanical behaviour of 
materials. It was shown that rather than depending 
on l/D, the rate of grain growth should depend 
on the rate of disappearance of grains [13 ], which 
is a function of both the average grain size and the 
grain size distribution. Microcrack formation 

0.047 0.026 0.005 0.013 
0.083 0.047 0.026 0.005 
0.176 0.083 0.047 0.026 
0.295 0.176 0.083 0.047 
0.365 0.295 0.176 0.083 
0 0.365 0.295 0.176 
0 0 0.365 0.295 
0 0 0 0.365 

N 1  

N2 
N3 
N4 

• Ns 
N6 
N7 
N8 
(1) 

during cooling brittle materials is possible only for 
grains larger than a critical size [15] and hence 
should depend on the grain size distributions; a 
consideration which is important in fracture 
studies. 

In the literature, only a few determinations of 
the grain size distributions have been carried out 
so far, some of which were merely two-dimensional 
[ 1 6 - 1 7 ] .  Examples are Feltham's [i 6] log-normal 
and Hillert's [17] skewed log-normal distributions. 
Spatial distributions in MgO were shown to be 
log-normal during normal grain growth but not 
otherwise. Similarly, A1203 showed log-normal 
spatial distributions only in the presence of 
uniformly dispersed MgO additive [10]. Theor- 

eticaUy, it was proposed that the type of grain size 
distribution should not remain constant, but 
would follow cycles of  one-peak and two-peak 
distributions [56]. Measurements of the grain 
size distributions of some hot-pressed MgO speci- 
mens did not conform to simple distribution 
functions [4]. To sum up, it can be suggested that 
strictly log-normal distributions could be the 
exception rather than the rule. 

A variety of typical polycrystalline specimens 
shown in Table III were selected for the study. 

Linear intercepts measured on photomicro- 
graphs, were grouped in classes 0.75 to 1, 0.56 to 
0 . 7 5 . . .  etc. of the maximum intercept length. 
Three-dimensional distributions were computed 
therefrom as explained above. A typical example 
is shown in Fig. 2 for the microstructure in Fig. 3. 

TABLE II 

2.740 -- 2.214 0.469 0.066 
0 2.740 -- 2.214 0.469 
0 0 2.740 -- 2.214 
0 0 0 2.740 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-- 0.129 0.055 0.062 -- 0.157 
0.066 -- 0.129 0.055 0.062 
0.469 0.066 -- 0.129 0.055 

- -  2.214 0.469 0.066 -- 0.129 
2.740 -- 2.214 0.469 0.066 
0 2.740 -- 2.214 0.469 
0 0 2.740 -- 2.214 
0 0 0 2.740 
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Figure 1 Two- and three-dimensional distributions in a 
hypothetical mono-sized specimen. 
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Figure 2 Microstructure of MgO. 

The spatial distributions derived by  the matrix 
approach are somewhat different from those 
obtained by  successive subtraction. 

The distributions were plot ted on log-probabili ty 

paper, and least-square fit straight lines were 
obtained, e.g. Fig. 4. If  the distributions were log- 
normal,  they should satisfy the criteria of: (i) 
quality of  fit to straight lines, measured by a 
correlation coefficient r = (23 X Y ) / ( s  X 2 + "2 y2)  

TABLE III  

Specimen Composition- Source or reference 
number treatment 

Steel, 0.1%C, full "Buehler", USA 
anneal 

Pure iron [ 13 ] 

Tough pitch copper, "Met. Serv", England 
0.04% O 

Brass, 59% Cu-41% Zn "Struers", Denmark 

A1203-0.25 w/o NiO, 
1675 ~ C for 40h 

Duralumin 

MgO, vacuum, hot 
pressed, annealed 
1300 and 1400 ~ C 

Prepared [18] 

[11] 

Prepared [19] 

Figure 3 Intercept and derived grain size distribution of 
MgO. 
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[20]. The results shown in Table IV suggest that 
although some intercept distributions conform 
to log-normality, none of the derived three- 
dimensional distributions can be described as log- 
normal. While the log-normality of some intercept 
distributions is a natural consequence of the 
randomness of intercepts, the evolution of three- 
dimensional distributions should be more complex 
and depends on the detailed history of grain 
growth. It can be concluded that grain size distri- 
butions are not necessarily log-normal. 

4. Sample sizes for grain size 
measurements 

In most of the literature on grain growth [9, 10, 
19, 2 1 4 5 ]  there seems to be little concern to 
assess whether the sample sizes employed were 
statistically adequate. In ASTM 11247 [46], it 
was recommended to increase the sample size if 
the 95% confidence limits of a measurement seems 
too large. 

As the representative sample sizes could be 
sensitive to the type of grain size distribution, 

TABLE IV 

Specimen Three-dimensional Two-dimensional 
number r Cumulative r Cumulative 

probability probability 
a t /3  at [ 

1 0.79 72% 0.81 62% 
2 0.76 50% 0.82 58% 
3 0.81 70% 0.82 57% 
4 0.78 72% 0.83 54% 
5 0.78 83% 0.77 60% 
6 0.71 72% 0.77 53% 
7 0.82 62% 0.76 73% 

Figure 4 Cumulative probability plots of 
distributions. 

statistical techniques were applied to evaluate the 
critical minimum sample sizes for the specimens 
in Table III. For a small sample of 100 intercepts, 
a preliminary estimate of the sample size ni  [47] 
at 95% confidence level, was taken as 

2 
1.96oi 

ni  - ~ (2) 

with a i being the preliminary sample standard 
deviation, and 5 the maximum deviation tolerated 
and taken as 10% of the sample mean. Two inde- 
pendent samples whose size is the estimated t/i 
were taken. The significance of the difference 
between their means was evaluated by a Z-test 
[20] at the 95% significance level, and their 
standard deviations were compared by an F-test 
at the 95% significance level [47]. The sample size 
was subsequently either increased or decreased (in 
multiples of ten-steps) and the procedure was 
repeated until a critical sample size was reached. 
Finally, two grain size distributions (of the critical 
size) were compared by a x2-test [20] at a 95% 
significance level. The final sample sizes arrived 
at are shown in Table V, as well as the dispersions 

TABLE V 

Specimen Minimum Dispersion 
sample size (two-dimensions) 

Single size 
hypothetical 30 0.32 
1 220 0.79 
2 60 0.34 
3 200 0.85 
4 120 0.69 
5 65 0.40 
6 100 0.54 
7 50 0.52 

2260 



TABLE VI of the distributions. The dispersion is taken as the 
coefficient of variation = (standard deviation/mean 
intercept size) [20], which is a more representative 
expression than the standard deviation. The single- 

size samples in Table V were obtained by operat- Single size 
ing random numbers on a list of serial numbers hypothetical 
(1--999) assigned to different groups of the 1 
hypothetical intercept distribution. It can be con- 2 
cluded that the minimum sample sizes should 3 

4 
range between 30 and 220 measurements, and 5 
generally increase with the dispersion of the 6 
distribution. 7 

Specimen K (=/5//-), based on 

Average caliper 
dimension 

Circumdiameter 

1.21 1.48 
1.02 1.24 
1.17 1.42 
0.97 1.19 
1.11 1.36 
1.23 1.50 
1.26 1.54 
0.95 1.16 

5. The average grain size L~ against the 
average intercept length [ 

The linear intercept model has been accepted as 
the most reliable and straightforward method for 
determining the average grain size, as well as the 
ASTM grain size number [46]. A relation of the 
type D = K[  is usually employed. The constant 
K depends on" 

(i) the assumptions made for the grain shape 
and size distribution. 

(ii) the definition of a grain size or "diameter". 
For uniformly spherical grains, K =  1.5 [48], 
or in a slightly different derivation [49 ] K = 1.62. 
Spheres are not space-filling bodies and since 
Sv = 2/f  [50], it was shown that for uniform 
tetrakaidecahedral grains K = 1.68 [51 ] or 
K =  1.776 [10]. For a slightly modified grain 
model [52], it was shown that K = 1.74 [53] or 
1.78 [54]. However, the presence of a distribution 
of grain sizes should be considered. Mendelson 
[14] has shown for a log-normal distribution that: 
K =  1.775e--2.5 In 2, where the grain size was 
defined as the caliper diameter. Applied to the 
log-normal [16] and the skewed log-normal distri- 
butions [17] this led to K = 1.558 and 1.570, 
respectively. Experimental evaluation of K as the 
ratio of the mean volume surface grain size t o / ,  
has shown these to be lower than those calculated 
according to the Mendelson [14] equation. The 
difference was attributed to errors in the Cahn and 
Fullman [7] method which overemphasizes the 
smaller sizes. Abnormal distributions led to K 
values higher than calculated. 

In this investigation, K was determined experi- 
mentally as the ratio of the average derived grain 
size to the average intercept length. The grain size 
was taken as the caliper dimension [14] and 
equals 2.45 times the edge length of a tetrakaideca- 
hedral grain model which is 0.82 times the maxi- 

mum intercept on that model [55]. As shown in 
Table VI, K varied between 0.95 and 1.26 and, as 
expected [9, 14, 49], seems to vary with the grain 
size distribution. On the other hand, if the grain 
size is taken as the maximum caliper dimension 
(circumdiameter), K ranges between 1.16 and 1.54. 
These, as well as previous results, suggest that 
a good deal of disagreement exists on what values 
of K should be taken; a situation accentuated by 
the wide variations in grain size distributions 
between different materials differently heat 
treated and by the different definitions of the 
term "grain size". It seems that reasonable accu- 
rate grain size data can be only obtained through 
grain size distribution determinations on lines 
similar to those described in this article. 

6. Conclusion 
The spatial average grain size cannot be inferred 
directly from the average intercept size, as they 
are related with a "constant" that depends on the 
nature of the grain size distributions. These were 
shown to be variable and not necessarily log- 
normal. Besides, the minimum representative 
sample size also varies. Hence, the procedure 
recommended is to measure about 500 intercepts, 
and compare two of these (250 each) using at 
least a Z-test as described in the text. If no signifi- 
cant difference is found (otherwise increase the 
sample size), the spatial grain size distribution is 
computed employing the inverse matrix and the 
technique given. 
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